

Journal of Fluorine Chemistry 84 (1997) 13-17

¹³C NMR studies of hydrochlorofluoropropanes and chlorofluoropropanes

T. Tanuma, K. Ohnishi, H. Okamoto, S. Morikawa

Research Center, Asahi Glass Co., 1150 Hazawa-cho, Kanagawa-ku, Yokohamashi, Kanagawa 221, Japan

Received 12 August 1996; accepted 17 February 1997

Abstract

¹³C NMR chemical shifts of 3,3-dichloro-1,1,1-trifluoropropanes (CF_3 -CXY-CHCl₂), 3-chloro-2,2,3,3-tetrafluoropropanes ($CCIF_2$ -CF₂-R), and diastereomers of 1,3-dichloro-1,1,2,3-tetrafluoropropane were studied by analysis using MNDO calculations. In CF₃-CXY-CHCl₂, ¹³C NMR chemical shifts of the methylene group are dependent on the electronegativity of the atoms attached to the methylene carbon, and those of the trifluoromethyl group depend on the magnetic anisotropy of neighboring halogen atoms X and Y. In CCIF₂-CF₂-R, the magnetic anisotropy of the atoms gauche to the terminal group and the steric effect of the terminal group are responsible for the ¹³C NMR chemical shift of a terminal halogenated methyl group, and the inductive effect of the substituent R mainly determines the ¹³C NMR chemical shift of the diffuoromethylene group. © 1997 Elsevier Science S.A.

Keywords: Hydrochlorofluoropropanes; Chlorofluoropropanes; 13C NMR chemical shift

1. Introduction

Over the past years we have been studying the correlation between ¹⁹F NMR chemical shifts and the molecular structure of halogenated propanes by analysis using MNDO calculations [1–3]. Despite some studies on ¹³C NMR chemical shifts of mono-halogenated compounds [4,5], there has not been a systematic study of ¹³C NMR chemical shifts of hydrochlorofluoropropanes and chlorofluoropropanes.

We are concerned with ¹³C NMR chemical shifts in CF₃-CXY-CHCl₂ (X, Y = H, Cl, F), CClF₂-CF₂-R, where R is a substituted methyl group containing combinations of H, Cl, F. We also compare ¹³C NMR chemical shifts with ¹⁹F NMR chemical shifts in these compounds.

2. Results and discussion

2.1. 3,3-Dichloro-1,1,1-trifluoropropanes (CF₃-CXY-CHCl₂)

Table 1 lists the ¹³C and ¹⁹F NMR chemical shifts of methylene groups and ¹³C NMR chemical shifts of trifluoromethyl groups in 3,3-dichloro-1,1,1-trifluoropropanes.

If additivity of the atoms in CXY is assumed, the ¹³C NMR chemical shifts of the substituted methylene groups and trifluoromethyl groups in 3,3-dichloro-1,1,1-trifluoropropanes (CF_3 -CXY-CHCl₂) are expressed by the number of H, F and

0022-1139/97/\$17.00 © 1997 Elsevier Science S.A. All rights reserved *PII* S 0022-1139 (97) 00040-7

Table 1 ¹³C and ¹⁹F chemical shift of CF₃ and CXY groups in CF₃-CXY-CHCl₂

-CXY-	$CF_3 \delta_C (ppm)$	$CH_3 \delta_F (ppm)$	CXY $\delta_{\rm C}$ (ppm)
CF ₂	118.6	-80.1	110.9
CCIF	119.9	-77.1	105.5
CHF	120.9	-75.0	89.5
CCl_2	121.3	-73.1	87.2
CHCI	122.0	-70.9	63.1
CH_2	123.7	-64.8	47.3

Cl atoms (n(H), n(F) and n(Cl)) in CXY as shown in Eqs. (1) and (2). For CXY

$$\delta_{\rm C}(CXY) = -25.72n({\rm H}) - 6.56n({\rm Cl}) + 6.89n({\rm F}) + 101.93$$

(1)

and for trifluoromethyl groups

$$\delta_{\rm C}(CF_3) = 61.74n({\rm H}) + 60.58n({\rm Cl}) + 59.28n({\rm F})$$
(2)

The relationships between the observed and calculated ¹³C chemical shifts are listed in Table 2.

Eq. (1) shows that more electronegative atoms tend to lead to larger shifts for the substituted methylene group. ¹³C NMR chemical shifts of the methylene group are, therefore, dependent on the electronegativity of the atoms attached to the methylene carbon.

In contrast with the case of the methylene group, the regression coefficients for the trifluoromethyl group are in reverse

Table 2 Observed and calculated $^{13}\mathrm{C}$ chemical shifts of CF3 and CXY groups in CF3-CXY-CHCl2

R	CF ₃		CXY		
	obs.	calc.	obs.	calc.	
CF ₂	118.6	118.6	110.9	115.7	
CCIF	119.9	119.9	105.5	102.3	
CHF	120.9	121.0	89.5	83.1	
CCl ₂	121.3	121.2	87.2	88.8	
CHCl	122.0	122.3	63.1	69.6	
CH2	123.7	123.5	47.3	50.5	
r	0.995		0.980		

order. Let us now compare the ¹³C chemical shift with the ¹⁹F chemical shift of the trifluoromethyl group in 3,3-dichloro-1,1,1-trifluoropropanes (CF₃-CXY-CHCl₂). A plot of the ¹³C chemical shifts vs. the ¹⁹F chemical shift of the trifluoromethyl group gives an approximately linear relationship (Fig. 1).

As we elucidated in the previous paper [2], the β -carbon may cause an increase in the paramagnetic terms, and ¹³C chemical shifts of the trifluoromethyl group in CF₃-CXY-CHCl₂ depend on the magnetic anisotropy of neighboring halogen atoms X and Y.

2.2. 3-Chloro-2,2,3,3-tetrafluoropropanes (CClF₂-CF₂-R)

Table 3 lists the ¹⁹F and ¹³C chemical shifts of the chlorodifluoromethyl group in 3-chloro-2,2,3,3-tetrafluoropropanes (CClF₂-CF₂-R), and a plot of the ¹⁹F and ¹³C chemical shifts are shown in Fig. 2.

As we reported [2], the ¹⁹F chemical shift of the chlorodifluoromethyl group in $CClF_2$ - CF_2 -R is determined by the steric effect, or the bulkiness of the substituent R, but it seems that the magnetic anisotropy as well as the steric effect plays an important role in the ¹³C chemical shifts.

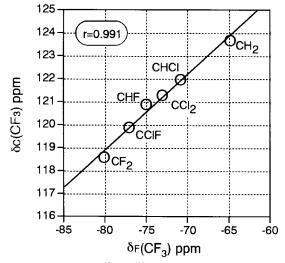


Fig. 1. Correlation between $^{13}\mathrm{C}$ and $^{19}\mathrm{F}$ chemical shifts of CF_3 in CF_3-CXY-CHCl_2.

Table 3 ¹⁹F and ¹³C chemical shifts of CCIF₂ in CCIF₂-CF₂-R

R	$\text{CClF}_2 \delta_{\text{F}} (\text{ppm})$	$\text{CClF}_2 \delta_{\text{C}} (\text{ppm})$		
CCl ₃	-61.3	123.3		
CCl_2F	-64.6	122.8		
CHCl ₂	-66.3	122.9		
$CClF_2$	-67.7	122.1		
CHCIF	-69.1	122.7		
CF ₃	-70.0	121.6		
CHF ₂	-70.3	122.1		
CH ₂ Cl	-70.4	123.2		
CH_2F	-71.0	122.9		
CH ₃	-72.5	124.0		

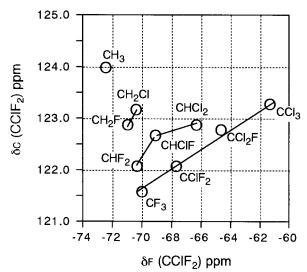


Fig. 2. Correlation between $^{19}\mathrm{F}$ and $^{13}\mathrm{C}$ chemical shifts of CClF_2 in CClF_2CF_2-R.

We have examined conformations using MNDO calculations to investigate the cause of the ¹³C chemical shift of the chlorodifluoromethyl group in CCIF₂-CF₂-R. The heats of formation of all rotamers of CCIF₂-CF₂-R were calculated as described previously in order to estimate the rotamer population [2]. As X and Y atoms in Fig. 3 are gauche to the carbon atom of the chlorodifluoromethyl group, the average number of gauche pairs of atoms in each rotamer of CCIF₂-CF₂-CXYZ, i.e. X–Y = H–H, H–Cl, H–F, F–F, F–Cl and Cl– Cl, was calculated. The average carbon frame angles (C–C– C angles) of CCIF₂-CF₂-CXYZ, as an indication of the steric interaction between CCIF₂ and CXYZ, were also calculated as listed in Table 4.

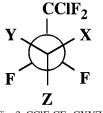


Fig. 3. CClF₂CF₂-CXYZ.

CXYZ	Average num	Average number of atoms in X, Y positions						
	<i>n</i> (H–H)	n(H–Cl)	n(H–F)	n(F-F)	n(Cl–F)	n(Cl–Cl)		
CCl ₃	0	0	0	0	0	1	117.21	
CCl_2F	0	0	0	0	0.892	0.110	115.87	
$CClF_2$	0	0	0	0.513	0.488	0	115.00	
CF ₃	0	0	0	1	0	0	114.41	
CH ₃	1	0	0	0	0	0	112.96	
CH ₂ Cl	0.804	0.197	0	0	0	0	112.35	
CH_2F	0.481	0	0.518	0	0	0	112.40	
CHCl ₂	0	0.969	0	0	0	0.031	114.03	
CHF ₂	0	0	0.957	0.013	0	0	113.58	
CHCIF	0	0.044	0.915	0	0.040	0	113.20	

The average number of atoms in X, Y positions of CCIF₂CF₂-CXYZ as depicted in Fig. 3 and calculated average C–C–C angles of CCIF₂CF₂-CXYZ

Table 5

Table 4

Observed and calculated ¹³C chemical shifts of CClF₂ in CClF₂CF₂-R

R	$\delta_{\rm C} ({\rm CClF}_2)$			
	obs.	calc.		
CCl ₃	123.3	123.3		
CCl ₂ F	122.8	122.8		
CClF ₂	122.1	122.2		
CF ₃	121.6	121.6		
CH ₃	124.0	124.0		
CH ₂ Cl	123.2	123.1		
CH_2F	122.9	123.1		
CHCl ₂	122.9	122.9		
CHF ₂	122.1	122.2		
CHCIF	122.7	122.5		
r	0.988			

The ¹³C chemical shifts are correlated with seven explanatory variables by multiple regression analysis, which gives Eq. (3), in which n(H-H), n(H-Cl), n(H-F), n(F-F), n(F-Cl), n(Cl-Cl) are the average numbers of pairs of atoms gauche to the chlorodifluoromethyl group in CClF₂-CF₂-CXYZ, and n(C-C-C) is the average carbon frame angle (C-C-C angle) of CClF₂-CF₂-CXYZ.

$$\delta_{\rm C}({\rm CClF}_2) = -324.54n({\rm F}-{\rm F}) - 323.87n({\rm Cl}-{\rm Cl}) -323.53n({\rm H}-{\rm F}) - 323.15n({\rm Cl}-{\rm F}) -323.02n({\rm H}-{\rm Cl}) - 321.59n({\rm H}-{\rm H}) +0.379n({\rm C}-{\rm C}-{\rm C})$$
(3)

The relationships between the observed and calculated ¹³C chemical shifts are shown in Table 5.

The regression coefficients in Eq. (3) are presumed to include the effect of magnetic anisotropy and the steric effect of the substituent R.

The substituent R containing many fluorine or chlorine atoms at X and Y positions would decrease the ¹³C chemical shift values through the magnetic anisotropy of the atoms, and the substituent R containing many chlorine atoms would increase the ¹³C chemical shifts by the steric effect of R. It seems that the combination of these two effects makes it difficult to predict ¹³C chemical shifts in general.

The ¹⁹F and ¹³C chemical shifts of the difluoromethylene group in halogenated propanes (CClF₂-CF₂-R) are given in Table 6 and a plot of the ¹⁹F and ¹³C chemical shifts is presented in Fig. 4.

As Fig. 4 indicates, the relation between the ¹⁹F and ¹³C chemical shifts of the difluoromethylene group seems to be

Table 6 ¹⁹F and ¹³C chemical shifts of CF₂ in CClF₂-CF₂-R

R	$CF_2 \delta_F (ppm)$	$CF_2 \delta_C (ppm)$	
CCl ₃	-108.3	110.7	
CCl ₂ F	-113.8	109.8	
CHCl ₂	-119.2	108.3	
CClF ₂	-125.6	107.6	
CHClF	-107.3	117.3	
CF ₃	-116.8	113.9	
CHF ₂	-122.7	112.9	
CH ₂ Cl	-116.4	112.0	
CH_2F	-129.3	109.3	
CH ₃	-123.3	110.5	

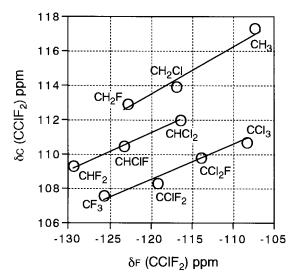


Fig. 4. Correlation between $^{19}{\rm F}$ and $^{13}{\rm C}$ chemical shifts of CF_2 in CClF_2CF_2-R.

The number of H. Cl. F atoms in R. the average C–C–C angle of CCIF₂-CF₂-R, and the observed and calculated ¹³C chemical shifts of CF₂ in CCIF₂-CF₂-R

CXYZ	Number of H	, Cl, F atoms in R		C–C–C angle (deg)	$\delta_{\rm C}~({\rm CF_2})$	
	<i>n</i> (H)	<i>n</i> (F)	n(Cl)		obs.	calc.
CCl ₃	0	0	3	117.21	110.7	111.0
CCl ₂ F	0	1	2	115.87	109.8	109.5
$CClF_2$	0	2	1	115.00	108.3	108.2
CF ₃	0	3	0	114.41	107.6	107.1
CH ₃	3	0	0	112.96	117.3	117.0
CH ₂ Cl	2	0	1	112.35	113.9	113.7
CH ₂ F	2	1	0	112.40	112.9	113.0
CHCl ₂	1	0	2	114.03	112.0	111.9
CHF ₂	1	2	0	113.58	109.3	110.2
CHCIF	1	1	1	113.20	110.5	110.7
					r = 0.990	

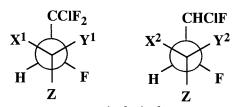


Fig. 5. Gauche positions (X^1, X^2, Y^1, Y^2) to the methyl group.

dependent on the number of hydrogen atoms in the substituted methyl group. The ¹³C chemical shifts of the difluoromethylene group in CCIF₂-CF₂-R are, therefore, expressed in Eq. (4), where n(H) is the number of hydrogen atoms in R:

$$\delta_{\rm C}({\rm CF}_2) = 0.167 \delta {\rm F}({\rm CF}_2) + 2.29n({\rm H}) + 128.70 \tag{4}$$

We assumed that the inductive effect of the substituent R and the distortion of electron clouds around the carbon atom are responsible for the ¹³C chemical shifts of the difluoromethylene group in CClF₂-CF₂-R. As a result, the ¹³C chemical shifts of the difluoromethylene group were successfully expressed by the number of H, Cl F atoms (n(H), n(F), n(Cl)) in R and the average carbon frame angle (C–C–C angle) of CClF₂-CF₂-R (n(C–C–C)). Table 7 shows n(H), n(F), n(Cl), n(C–C–C) and observed and calculated ¹³C chemical shifts of the difluoromethylene group in CClF₂-CF₂-R.

$$\delta_{\rm C}({\rm CF}_2) = 14.93n({\rm H}) + 12.03n({\rm F}) + 11.32n({\rm Cl}) + 0.639n({\rm C} - {\rm C} - {\rm C})$$
(5)

Although we reported [2] that the ¹⁹F chemical shifts of the difluoromethylene group in 2,2-difluoropropanes are determined by magnetic anisotropy of atoms gauche to F in the difluoromethylene group, the ¹³C chemical shifts of the difluoromethylene group in CClF₂-CF₂-R are affected by the inductive effect, or electronegativity of the substituent R. This may be because the carbon atom of the difluoromethylene group is linked to R by one σ bond, while the fluorine atom of the difluoromethylene group is two σ bonds distant.

2.3. ¹³C NMR chemical shifts of diastereomers

We report the ¹³C chemical shifts and the results of conformational analysis of diastereomers of 1,3-dichloro-1,1,2,3-tetrafluoropropane (234eb, [6]). Calculating the populations of rotamers on the basis of the differences in their heats of formation by AM1 [2], we figured the average number of pairs of atoms gauche to the terminal halogenated methyl group. As for CCIF₂ in CCIF₂-CHF-CX¹Y¹Z, gauche pairs of atoms are X¹-Y¹=H-Cl, H-F, F-Cl; and as to CHCIF in CX²Y²Z-CHF-CHCIF, they are X²-Y²=F-F, F-Cl (Fig. 5). The average carbon frame angles (C-C-C angles) of CCIF₂-CHF-CHCIF were also calculated as an indication of the steric interaction between CCIF₂ and CHCIF as listed in Table 8.

As we have already pointed out, both magnetic anisotropy of the atoms gauche to the terminal group and the steric effect of the terminal group are responsible for the ¹³C chemical

Table 8

The average number of pairs of atoms gauche to the terminal methyl group, the calculated C–C–C angle of CCIF₂-CHF-CHCIF, and ¹³C chemical shifts of CCIF₂ and CHCIF in diastereomers of CCIF₂-CHF-CHCIF

	Average number of pairs of atoms			C–C–C angle (deg)	$\delta_{ m C}$
CClF ₂	n(H-Cl)	n(H-F)	n(Cl-F)		$(CClF_2)$
Ι	0.172	0.645	0.183	110.83	124.0
II	0.410	0.573	0.017	110.15	123.6
CHClF	n(F-F)	n(Cl-F)			(CHClF)
Ι	0.281	0.719		110.83	96.1
II	0.302	0.698		110.15	94.6

Table 7

shift of a terminal halogenated methyl group in halogenated propanes. Eq. (3) shows that the pairs of atoms such as F–F and H–F decrease the ¹³C chemical shift values of CClF₂ and CHClF. However, the larger the average C–C–C angle of halogenated propanes, the larger the ¹³C chemical shift values of CClF₂ and CHClF. In CClF₂-CHF-CHClF, diastereomer I has a larger average C–C–C angle and more n(H–F) and n(Cl–F), while diastereomer II has more n(F–F), which makes the difference in the ¹³C chemical shift values of CClF₂ smaller and that in CHClF larger.

3. Experimental details

3.1. NMR spectra

All the compounds were prepared as described in a previous paper [2]. The ¹⁹F chemical shift data for halogenated propanes were extracted from the literature [2]. The ¹³C NMR spectra were obtained in the pulse Fourier transform mode using a JNM-EX-90 (JEOL) instrument operating at 22.5 MHz. The spectral data were recorded in CDCl₃ solution (0.05–0.2 M) with TMS as an internal reference. Chemical shifts are given in parts per million (ppm) from TMS.

3.2. Calculations

MNDO calculations were performed on a Titan 3000 computer with full geometry optimization using a MOPAC 5.0 program [7–9].

3.3. Spectral data

1,1,1,3-Tetrachloro-2,2,3,3-tetrafluoropropane (214cb). ¹³C NMR δ : 91.7 (tt, ²*J*=34.2, ³*J*=2.8 Hz); 110.7 (tt, ¹*J*=271, ²*J*=32.9 Hz); 123.3 (tt, ¹*J*=304, ²*J*=38.8 Hz) ppm.

1,1,3-Trichloro-1,2,2,3,3-pentafluoropropane (215ca). ¹³C NMR δ : 122.8 (ttd, ¹*J*=302, ²*J*=37.4, ³*J*=2.2 Hz); 109.8 (ttd, ¹*J*=270, ²*J*=33.9, ²*J*=31.3 Hz); 114.2 (dtt, ¹*J*=305, ²*J*=34.6, ³*J*=2.2 Hz) ppm.

1,3-Dichloro-1,1,2,2,3,3-hexafluoropropane (216ca). ¹³C NMR δ : 122.1 (tt, ¹*J*=302, ²*J*=36.0 Hz); 108.3 (t quint, ¹*J*=269, ²*J*=35.2 Hz) ppm.

1-Chloro-1,1,2,2,3,3,3-heptafluoropropane (217ca). ¹³C NMR δ : 117.9 (qt, ¹*J*=287, ²*J*=33.7 Hz); 107.6 (tqt, ¹*J*=268, ²*J*=38.7, ²*J*=35.9 Hz); 121.6 (tt, ¹*J*=299, ²*J*=34.5 Hz) ppm.

1,1,2-Trichloro-2,3,3,3-tetrafluoropropane (224ba). ¹³C NMR δ : 119.9 (qd, ¹*J*=287, ²*J*=30.8 Hz); 105.5 (dq, ¹*J*=226, ²*J*=35.2 Hz); 68.8 (d, ²*J*=31.3 Hz) ppm.

1,1,3-Trichloro-2,2,3,3-tetrafluoropropane (224ca). ¹³C NMR δ : 122.9 (tt, ¹*J*=302, ²*J*=36.7 Hz); 112.0 (tt, ¹*J*=264, ²*J*=31.9 Hz); 65.4 (t, ²*J*=30.8 Hz) ppm.

1,1-Dichloro-2,2,3,3,3-pentafluoropropane (225ca). ¹³C NMR δ : 64.9 (t, ²*J*=30.2 Hz); 110.9 (tq, ¹*J*=262, ²*J*=37.2 Hz); 118.6 (tq, ¹*J*=287, ²*J*=35.2 Hz) ppm.

1,3-Dichloro-1,1,2,2,3-pentafluoropropane (225cb). ¹³C NMR δ : 122.7 (dt, ¹*J*=168, ²*J*=35.7 Hz); 110.5 (dddd, ¹*J*=267, ¹*J*=260, ²*J*=33.2, ²*J*=26.0 Hz); 94.8 (ddd, ¹*J*=252, ²*J*=36.5, ²*J*=27.2 Hz) ppm.

1-Chloro-1,1,2,2,3,3-hexafluoropropane (226cb). ¹³C NMR δ : 122.1 (tt, ¹*J*=299, ²*J*=34.6 Hz); 109.3 (ttt, ¹*J*=263, ²*J*=34.1, ²*J*=26.4 Hz); 108.2 (tt, ¹*J*=254, ²*J*=32.1 Hz) ppm.

1,1,2-Trichloro-3,3,3-trifluoropropane (233da).¹³C NMR δ : 122.0 (q, ¹*J*=281 Hz); 63.1 (q, ²*J*=32.6 Hz); 67.4 (q, ³*J*=1.9 Hz) ppm.

1,3-Dichloro-1,1,2,2-tetrafluoropropane (234cc). ¹³C NMR δ : 123.2 (tt, ¹*J*=299, ²*J*=36.5 Hz); 113.9 (tt, ¹*J*=257, ²*J*=33.0 Hz); 40.0 (t, ²*J*=26.1 Hz) ppm.

1,1-Dichloro-2,3,3,3-tetrafluoropropane (234ea). ¹³C NMR δ : 120.9 (qd, ¹*J*=283, ²*J*=26.4 Hz); 89.5 (dq, ¹*J*=201, ²*J*=33.9 Hz); 64.7 (dq, ²*J*=24.9, ³*J*=5.9 Hz) ppm.

1,3-Dichloro-1,1,2,3-tetrafluoropropane, diastereomer I (234eb). ¹³C NMR δ : 124.0 (td, ¹*J*=297, ²*J*=27.2, ³*J*=2.5 Hz); 90.3 (ddt, ¹*J*=200, ²*J*=29.8 Hz); 96.1 (ddt, ¹*J*=245, ²*J*=28.6, ³*J*=2.0 Hz) ppm.

1,3-Dichloro-1,1,2,3-tetrafluoropropane, diastereomer II (234eb). ¹³C NMR δ : 123.6 (tdd, ¹*J* = 297, ²*J* = 26.9, ³*J* = 2.5 Hz); 91.3 (dtd, ¹*J* = 205, ²*J* = 29.5, ²*J* = 20.3 Hz); 94.6 (ddt, ¹*J* = 251, ²*J* = 21.8, ³*J* = 2.1 Hz) ppm.

1-Chloro-1,1,2,2,3-pentafluoropropane (235cc). ¹³C NMR δ : 122.9 (tt, ¹*J*=298, ²*J*=35.6 Hz); 112.9 (ttd, ¹*J*=257, ²*J*=33.8, ²*J*=19.8 Hz); 78.0 (dt, ¹*J*=186, ²*J*=30.5 Hz) ppm.

1,1-Dichloro-3,3,3-trifluoropropane (243fa). ¹³C NMR δ : 64.1 (q, ³*J*=4.2 Hz); 47.3 (q, ²*J*=29.7 Hz); 123.7 (q, ¹*J*=278 Hz) ppm.

1-Chloro-1,1,2,2-tetrafluoropropane (244cc). ¹³C NMR δ : 124.0 (ttt, ¹*J*=297, ²*J*=37.6 Hz); 117.3 (tt, ¹*J*=251, ²*J*=34.1 Hz); 17.7 (t, ²*J*=24.7 Hz) ppm.

References

- T. Tanuma, K. Ohnishi, H. Okamoto, T. Miyajima, S. Morikawa, Rep. Res. Lab. Asahi Glass Co., Ltd. 41 (1991) 225.
- [2] T. Tanuma, K. Ohnishi, H. Okamoto, T. Miyajima, S. Morikawa, J. Fluorine Chem. 57 (1992) 259.
- [3] T. Tanuma, K. Ohnishi, H. Okamoto, T. Miyajima, S. Morikawa, J. Fluorine Chem. 76 (1996) 45.
- [4] W.M. Litchman, D.M. Grant, J. Am. Chem. Soc. 90 (1968) 1400.
- [5] M.L. Huggins, J. Am. Chem. Soc. 75 (1953) 4123.
- [6] For the coding system, see the footnote to T. Tanuma, K. Ohnishi, H. Okamoto, T. Miyajima, S. Morikawa, J. Fluorine Chem. 57 (1992) 259.
- [7] M.J.S. Dewar, W. Thiel, J. Am. Chem. Soc. 99 (1977) 4899, 4907
- [8] M.J.S. Dewar, E.G. Zeobisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107 (1985) 3902.
- [9] J.J.P. Stewart, J. Comput. Chem. 10 (1989) 209, 221.